

Case study | Nava PBC

Structuring a complex eligibility
form for HealthCare.gov

By Sawyer Hollenshead

Published August 6, 2018

This is part of a series of blog posts about Nava Public Benefit Corporation's partnership
with the Centers for Medicare and Medicaid Services to design and build a new eligibility
application for millions of Americans seeking health coverage on HealthCare.gov. ​Read
more in this series ​.

In government, eligibility applications are used to determine whether a person or group
of people can access ​something ​. This ​something ​ could be a scholarship, citizenship, free
or reduced lunch, or any service the government offers because of a policy or law. These
applications can range from very simple (e.g. "Is your household income below X
amount?") to very complex.

Nava PBC had the challenge of determining how to structure the complex eligibility
application on HealthCare.gov, part of an oftentimes deeply personal process, one that
will determine how they care for themselves and their family. At a high level, the
HealthCare.gov eligibility application determines whether a person's family is eligible for
an insurance plan, and whether they're eligible for any cost savings to make their
insurance more affordable. In addition, the application determines whether a person is
eligible for Medicaid or the Children’s Health Insurance Program (CHIP), programs which
provide free or low-cost health coverage to millions of Americans. The application
therefore determines whether or not people, both at the individual and household level,
are eligible for a variety of programs and services. To make it even more complex,
Medicaid and CHIP policies vary state-to-state ​.

This presented a challenge to our team: How might we design a simple and clear
experience for a form that needs to handle many different family circumstances, and
therefore the questions can vary widely? One way we approached this was by ​providing
timely help and guidance​ to the applicant. ​Another way, discussed below, was in how
we used different design patterns to break the application into digestible chunks of
questions, simplifying the interface, and allowing the applicant to focus on smaller
bits of information at a time.

Determining the overall sequence of questions
The first task the team had to tackle was determining what questions even needed to be
asked. This isn't as simple as it might seem. In order to do this, Nava's design and
product teams (special shoutout to David Myers and Domenic Fichera) needed to
intimately understand the various policies that were driving the information required from
applicants, and we worked closely with partners at the Center for Consumer Information
and Insurance Oversight to do this.

https://blog.navapbc.com/help-and-guidance-content-patterns-for-healthcare-gov-19997a1d7b1e
https://blog.navapbc.com/help-and-guidance-content-patterns-for-healthcare-gov-19997a1d7b1e
https://www.kff.org/medicaid/fact-sheet/where-are-states-today-medicaid-and-chip/
https://blog.navapbc.com/help-and-guidance-content-patterns-for-healthcare-gov-19997a1d7b1e
https://blog.navapbc.com/help-and-guidance-content-patterns-for-healthcare-gov-19997a1d7b1e

Once we identified the questions we needed to ask and their corresponding policies, we
created a massive flow chart, mapping the order of questions, conditions determining
when a question is displayed, and any important policy context. In addition to the policy
constraints, we defined several design principles to help shape the ordering of questions.

A small slice of the flow chart showing the sequence, conditions, and business logics for all of the
application's questions

The first of our design principles was to ​tailor to individual needs​. Applying for health
care is difficult enough without additional bloat. We aimed to give people the simplest
application that matched their specific circumstances, rather than a one-size-fits-all
solution. In practice, this meant only asking the questions absolutely necessary, providing

the shortest possible path for each person. This sometimes meant introducing a broader
"filter question" to understand whether a specific situation applies to anyone in the
household. This would allow applicants to skip entire sets of questions if they answered
the filter question a particular way.

You wouldn't start a conversation by asking for sensitive
details about a person – you'd first ask some basic questions
that they'd be comfortable answering, like their name.

The second of our design principles was to ​minimize the effort needed to apply ​. A part
of this is presenting questions in a logical and natural order. Thinking about the form we
were designing as a conversation helped us with this. For example, you wouldn't start a
conversation by asking for sensitive details about a person – you'd first ask some basic
questions that they'd be comfortable answering, like their name. Within conversations
you flow from one topic to the next, and so we mimicked that in the form by grouping
related information by topic. For example, rather than scattering questions about an
applicant's income throughout the application, we grouped all income-related questions
into an Income section. (This might seem obvious, but it can be challenging to untangle
multiple policies in order to group the information they're looking for). In conversation,
there are also natural pauses. We listened for these natural pauses in the questions we
were asking, and this helped determined where white space could be introduced or
where the form could be split into multiple pages.

Question sequencing design patterns
With these goals in mind, tailoring to individual needs and minimizing effort, we entered
an exploratory phase where we researched and prototyped various question sequencing
patterns. In the end, we landed on four main patterns:

● One thing per page
● Exposed within
● Exposed after
● Hub-and-spoke

One thing per page
Thinking of the form as a conversation leads you, the designer, to think of questions as
groups of topics. Within topics, there are smaller groups of information that you're
gathering. For example, a topic could be a family member named Alex. While talking
about Alex, you might cover things like their basic information (e.g. name, birthday) and
then later discuss their health care history.

Inspired by ​form structure guidance published by GDS ​, we started by structuring the form
across multiple pages with each page containing just one thing. A "thing" doesn't mean a
single field, and the majority of time it meant a small set of questions related to very
specific pieces of information (e.g. "Alex's income"). We thought of the guidance more as
"One topic per page," which we also found as useful framing when discussing the idea
with stakeholders. We looked for the natural pauses in the conversation, and split the
application's questions across multiple pages when it made sense.

https://www.gov.uk/service-manual/design/form-structure

Some folks are hesitant when first encountering the idea of "one thing per page"
because, as an industry, we've conditioned stakeholders and ourselves to think more
clicks and more pages are a bad thing. This doesn't have to be the case. Certainly,
unnecessary ​ clicks and ​unnecessary ​extra pages show lack of good design, but ​when
pages are introduced thoughtfully in order to provide better pacing and guidance, the
user experience benefits ​. We were fortunate to come across research from GOV.UK to
help back us on this point:

We started with asking just one or two questions per screen, making it very
manageable on mobiles. When we sent this early design around internally for
comments, a common response was that it felt odd on large screens. […] However
when we started user research with the general public, we saw a very positive
response to the simple step by step approach, even on large screens. Though it
added more clicks, people said it made the process feel simple and easy - there
wasn’t too much to take in and process at any one time. So we stuck with the
simpler screens for everyone. — ​Things we learnt designing 'Register to vote'​,
GOV.UK

We've found that a surprisingly good approach, where received wisdom would lean
towards more grouping. I'd rather users get bored than get stuck, and 'one thing
per page' really helps low confidence users not get stuck. Things are easier to
understand and focus on, and errors are more easily corrected, scrolling is kept to a
minimum. — ​Joe Lanman​, GOV.UK

Branching questions
After structuring the form across multiple pages, we still needed design patterns to help
us surface questions, only when they were needed of course. We used branching
questions, or conditional questions — if an applicant answers the question one way, they
go down path A, if they answer it another way, they go down path B. The "one thing per
page" pattern helps with this, but there are still times where a single page may have
branching questions on it.

https://designnotes.blog.gov.uk/2014/07/14/things-we-learnt-designing-register-to-vote/
https://paper.dropbox.com/doc/Form-structure-MJQQcDUB14eAnage4WoHq?t=168536270894204#:t=168536270894204

To handle these scenarios, we used two different patterns:
● Exposed within
● Exposed after

Exposed within

The exposed within pattern typically takes the form of a set of radio options, which
expose another field below a selected option. One benefit of this pattern is that the
follow-up question is displayed within context, making it clear why the question is being
asked.

In his book "​Web Form Design ​," Luke Wroblewski discussed usability testing research
where users were presented with a form including this pattern. With eye-tracking and
usability metrics set up, participants were asked “Please complete the form fully and
accurately.”

In his research, the exposed within pattern was found to be the fastest solution tested
and had the lowest number of average fixations – meaning the pattern required the
lowest level of effort required to parse the form.

http://rosenfeldmedia.com/books/web-form-design/

As you can probably anticipate, this pattern can backfire if not used thoughtfully. In the
same research, Luke found:

If the number of selection-dependent inputs is substantial, this method breaks
down quickly. The combination of page jumping and the movement of the initial set
of options as the elements between them are revealed and hidden makes for a
disorientating interaction that frequently has people questioning which user
interface element triggers which set of options.

With this in mind, we constrained ourselves to only use the exposed within pattern when
the exposed question was a single field. For everything else, we used the pattern
discussed next.

Exposed after

The exposed after pattern is likely one most people are familiar with. This pattern reveals
additional questions after a set of initial options. This pattern is useful when the follow-up
questions require more than a single field, or are too information dense to be exposed
within another option.

A constraint we applied to this pattern was to limit the exposed questions to those that
directly related to the current page's topic. For other cases, the follow-up questions
would be displayed on a separate page. Another constraint was to limit usage of the
pattern to questions that follow the selection of a radio, checkbox, or menu option. This
meant that questions are never exposed after an applicant types into a text field, which
we found to be a potentially disorienting and jarring experience—almost like when
someone tries to speak over you in conversation. Not polite.

Looping questions
Within the application there are topics – like family members and income sources –
where we first need the applicant to indicate how many there are, loop through each one
and answer the same set of questions. Once added, we then need functionality to
support editing or removing the item. We explored a few design patterns to handle these
"looping questions," and found the most flexible to be a hub-and-spoke pattern. This
pattern consists of a "hub," a routing page where the applicant starts an action and
returns after completing the action. And "spokes," the various paths an applicant can take
from the hub. We explored other options, like using a text field where the applicant could
first indicate the number of items, or by placing repeatable "cards" all on the same
screen. But for looping questions, the hub-and-spoke pattern provided space for the

questions to live, without creating an overwhelming long-scroll form and gave clearer
indicators of how to edit or remove an item.

Examples of two looping question sequences using the hub-and-spoke pattern

One example of this pattern in action was in the income section of the application. In
order to determine whether a household is eligible for help paying for coverage, the
applicant needs to calculate their monthly and annual income. To help calculate this, the
applicant enters all income sources (e.g. job, scholarship) and deductions (e.g. alimony)
for everyone in their household. The income section had a hub for each person to add an
income source, automatically return back to the hub, and then add other income sources
or deductions before continuing to the next section.

Our recommendation is to track the completion rates of these hub-and-spoke sections
and, in user research, observe how applicants use it to ensure the pattern and choice
architecture supports applicant needs and avoids pogo-sticking or other pitfalls of the
hub-and-spoke pattern.

Usability testing on the previous version of the application with new enrollees and
re-enrollees found that we could "enhance the user experience and eliminate cognitive
burden." From applicants we heard, not surprisingly, that they are more likely to complete
the form successfully (or at all) when we take on the burden of parsing policy and
integrating the right tools and decision trees behind the scenes to route them to a lighter
page with digestible chunks of questions relevant to their situation.

Our design principles were to tailor to individuals needs and minimize the effort needed
to apply, and we believe the design patterns described above are steps in the right
direction.

Additional reading
We were fortunate to come across a number of helpful resources while working on these
patterns, and hopefully this post is a welcome contribution to the collection. Below are
links to resources that helped shape this work:

● Web Form Design ​, Luke Wroblewski
● Conversational Design ​, Erika Hall
● Form structure guidance​, GOV.UK
● Designing usable forms: the three-layer model of the form ​, Jane Matthews

Special thanks to ​Jodi Leo​, ​Zoe Blumenfeld​, and the entire design team (​Olivia Cheng ​,
Susan Lin​, and ​Kelli Ho ​) for helping put this together, and to the many dedicated civil
servants who collaborated with us to improve the user experience over many years.

http://rosenfeldmedia.com/books/web-form-design/
https://abookapart.com/products/conversational-design
https://www.gov.uk/service-manual/design/form-structure
http://www.effortmark.co.uk/three-layer-model/
https://medium.com/@jodify
https://medium.com/@zoeblumenfeld
https://medium.com/@heyits0livia
https://medium.com/@mintlodica
https://medium.com/@kellular

