
Author

Jez Humble

navapbc.com
hello@navapbc.com

Cloud Infrastructure in
the Federal Government
Modern Practices for Effective Risk Management

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 2

Abstract

The use of cloud infrastructure combined with modern
DevOps practices can deliver significant benefits to
federal agencies. Agencies report substantially higher
service availability, reduced costs, and faster delivery
when implementing recommended principles and
practices, and are able to do so while meeting the
requirements of FISMA and FITARA. These benefits
cannot be achieved, however, by simply applying
traditional data center practices to cloud infrastructure.

Agencies and vendors must adopt the new toolchains,
processes, and architectural approaches described in
this paper, using platform-as-a-service (PaaS) for new
systems and infrastructure-as-a-service (IaaS) for sys-
tems that lack a cloud-native architecture or for edge
cases where a PaaS is not feasible. These innovations
allow agencies to deliver high-quality services faster
and less expensively while simultaneously improving
their ability to manage risk. In this paper, we present
principles and practices for cloud infrastructure
management that draw from the DevOps movement to
enable agile development and that have been success-
fully implemented in federal government agencies.

Modern Cloud Deployments
Require Modern Practices
Page 3

Leverage Cloud-Native
Architecture
Page 6

Employ DevOps Practices
Page 9

Cloud Platform Principles and
Practices
Page 12

Reference Architecture:
Platform-as-a-Service
Page 20

Managing
Infrastructure-as-a-Service
Page 26

Conclusion and
Recommendations
Page 32

Cloud Infrastructure in
the Federal Government
Modern Practices for Effective Risk Management

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 3

Modern Cloud Deployments
Require Modern Practices
The use of public cloud services has enjoyed rapid up-
take in the private sector, even in regulated domains
such as healthcare and finance. Done right, public
and community cloud services can substantially re-
duce investment in infrastructure, shrink the time to
deliver services, reduce operational complexity and
maintenance costs, and provide better security and
compliance outcomes. These benefits are attractive
to public-sector customers as well. In fact, as of May
2017 more than 50 US federal government agencies
were using FedRAMP Authorized cloud infrastructure
services such as Amazon Web Services (AWS), Google
Cloud Platform, Salesforce, and Microsoft Azure1.

A well-designed, centrally managed cloud platform
helps agencies meet the requirements of FISMA and
FITARA, while also giving teams the flexibility to use
the technologies and toolchains they determine are
most suitable, and to self-service the operations they
need to deploy and operate their systems. This allows
modern agile and DevOps principles and practices to
be employed when building and operating information
systems, which substantially reduces costs and time-
to-market while increasing reliability and availability.
These modern paradigms are essential if agencies are
to avoid business-as-usual: multi-year contracts with
inflated price tags and high failure rates in delivering
value to agencies, taxpayers, and the public.

1. https://marketplace.fedramp.gov/index.html#products?status=Compliant
&sort=productName&serviceModels=IaaS&deploymentModels=Public%20
Cloud;Government%20Community%20Cloud

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 4

It is important to note, however, that the benefits of a
well-designed cloud platform cannot be achieved with
poor implementations that simply move traditional
data center operations to the cloud, with no other
changes in practices. This approach will provide little
benefit over traditional data centers, and will not
support modern practices in delivering and running
software services.

A common but egregious example of failing to imple-
ment cloud services correctly relates to on-demand
self-service. This is the first of five essential charac-
teristics of the cloud defined in NIST SP 800-145, The
NIST Definition of Cloud Computing, which states:

“On-demand self-service. A consumer can
unilaterally provision computing capabilities,
such as server time and network storage, as
needed automatically without requiring human
interaction with each service provider.”

Many teams that are building and operating systems
hosted on government cloud services must
still raise tickets to perform routine operations
such as creating a new testing or production
environment, making changes to the configuration
of their environment, or deploying an application.
These tickets are then processed manually by
vendors or contractors who make the changes
requested through the cloud’s console. The result
is long lead times and the possibility of errors
or misunderstandings (which must be remedied
by creating yet another ticket). It can also lead to
inconsistent, hard-to-reproduce “works of art.” These
consist of servers and infrastructure configurations
that have evolved through manual changes and that
are insufficiently documented for their configuration
state to be reliably and deterministically recreated
for testing or disaster recovery purposes.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 5

If traditional data center change- and configuration-
management processes are used to manage cloud
infrastructure, it’s impossible to achieve the higher
service delivery throughput, operational stability,
and availability that is possible with a well-designed
cloud platform. Indeed, the result cannot even be
called a cloud according to NIST’s definition. And
while it has been argued that on-demand self-service
is impossible to achieve within the context of FISMA,
FITARA, and federal procurement practices, compliant
implementations that meet these requirements
already exist. In recent years, many federal agencies
have begun adoption of modern, agile approaches to
software delivery, with the goal of building higher-
quality services faster and less expensively.

Our central recommendation is that agencies create
a multi-tenant cloud platform that implements the
majority of the controls required and allows teams
that are building and operating information systems
to self-service resources. This approach balances the
need for effective risk management and governance,
which FITARA and FISMA demand, while providing
teams the flexibility they require. In this way, agencies
can meet their risk-management goals while also en-
abling the faster delivery, higher reliability and avail-
ability, and improved quality that the agile and DevOps
movements enable.

This paper describes the critical elements required
for compliant, multi-tenant cloud platforms in a
federal government context, presents principles
and practices for implementing them, and includes
a reference implementation that draws from a
FedRAMP-authorized service.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 6

Leverage Cloud-Native Architecture to Meet
Architectural and Security Goals, Increase
Utilization, and Reduce Costs
We have seen multiple instances of agencies that have
moved data center operations to the cloud without
adopting the architectural design principles that are
required for success. The concept of a cloud-native
architecture is therefore critical to understanding the
recommendations that follow. This approach leverages
the unique capabilities of the cloud to meet architec-
tural and security goals such as confidentiality, integri-
ty, and availability, while also increasing utilization and
therefore reducing costs. Three characteristics of cloud
infrastructure are of particular importance, and are
described in more detail below.

1. Disposability of resources
By definition, cloud resources can be provisioned
on-demand, which means they can easily be disposed
of and recreated as needed. This has substantial im-
plications for cloud-native architecture. Rather than
making changes to existing systems, we can provision
new versions of a service through a fast and fully au-
tomated process and then delete the old version. That
reduces the complexities of deployment and disaster
recovery, prevents configuration drift, and streamlines
the patching process. In addition, if we implement
continuous deployment to update services frequently,
it makes it significantly harder for attackers to gain a
foothold in our production infrastructure2.

2. Distribution
Systems built to operate on a cloud will necessarily
be distributed systems. This follows from the
inevitability of network partitions in the context of a
cloud infrastructure. The architectural approaches
behind using agile methods to build highly available
2. Chad Fowler introduced the concepts of immutable infrastructure
and disposable components here: http://chadfowler.com/2013/06/23/
immutable-deployments.html

http://chadfowler.com/2013/06/23/immutable-deployments.html
http://chadfowler.com/2013/06/23/immutable-deployments.html

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 7

distributed systems find perhaps their best one-
sentence expression in an article from 2007 by Jesse
Robbins, previously Head of Availability for Amazon:

“Operations at web scale is the ability to
consistently create and deploy reliable
software to an unreliable platform that scales
horizontally.”3

In the context of distributed systems, we must assume
that our infrastructure may fail at any time. For this
reason, we create multiple instances of every service
that run in parallel in multiple data centers, allowing for
seamless hot-failover in the event of a network partition
or failure. Amazon services such as the Relational
Database Service (RDS), Lambda, Auto Scaling Groups,
and Electric Load Balancers (ELB)—and their equivalents
on other providers—make it straightforward to design
systems in this way.

This type of architecture, in which there is no single
point of failure, combined with the ability to create
new resources on-demand helps prevent outages. It
also allows us to scale up our infrastructure horizon-
tally (in other words, by creating more instances of
each component) to meet spikes in usage, and scale
it down to reduce costs when usage goes down. Am-
azon’s auto-scaling groups allow these activities to be
performed automatically in response to algorithms or
monitoring telemetry.

3. Cloud primitives
Cloud infrastructure provides primitives—infrastruc-
ture objects that can be self-serviced and configured
through an API—such as networking components
(virtual networks, gateways, routing tables, firewalls),
compute (virtual machines), storage (including ob-
ject and persistent block storage), messaging, and
3. http://radar.oreilly.com/2007/10/operations-is-a-competitive-ad.html

http://radar.oreilly.com/2007/10/operations-is-a-competitive-ad.html

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 8

databases. These primitives are designed to be robust,
inexpensive, and easy to configure and manage.

Cloud-native architectures should use cloud
primitives wherever possible rather than re-
implementing them. For example, use native firewall
primitives, virtual private gateways, and virtual private
cloud (VPC) peering rather than custom appliances,
and use cloud-native messaging and database services
rather than customized, user-maintained middleware
wherever possible.

This approach has multiple benefits:

• Provisioning and configuration is taken care of by the
cloud provider, and can be performed self-service
using the provider’s API.

• Maintenance burden is significantly reduced, since
updates, upgrades, and routine maintenance are han-
dled transparently by the vendor.

• Monitoring and alerting for these primitives is typi-
cally integrated into the cloud’s built-in distributed
monitoring and alerting services.

• Where services have received FedRAMP authorization,
this can be leveraged in order to reduce the cost and
time required to achieve an Authority to Operate (ATO).

• Availability of these services up to a certain service
level objective (SLO) is often guaranteed by the ven-
dor, with high-availability configurations provided or
documented for many services.

There are very few legitimate situations where the
services provided by commercial clouds are not
sufficient for agency use. Customization or re-
implementation should be avoided since this leads
to substantial initial development and ongoing
maintenance costs.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 9

Employ DevOps Practices to Increase Availability,
Reduce Cycle Times, and Improve Auditability
Infrastructure-as-code (IaC) is a key DevOps practice that
helps increase both availability and integrity. In the IaC
paradigm, the complete infrastructure specification is
kept in machine-readable form in version control, and all
changes to our infrastructure are made using programs
that understand and can apply these specifications.

The use of IaC enables a fully automated and auditable
approach to change management. All changes to the
infrastructure configuration should be made through
a self-service automated deployment system that will
manage the lifecycle and configuration of all infra-
structure objects in the cloud infrastructure, including
networking and storage. Such a system can, for exam-
ple, be implemented using GitHub or AWS CodeCom-
mit for source control, a continuous integration tool,
and a cloud configuration management tool such as
Terraform or AWS CloudFormation to apply changes.
This system is referred to as the infrastructure deploy-
ment pipeline4 (IDP), which is shown in Figure 1.
4. For more on deployment pipelines, see https://continuousdelivery.com/
implementing/patterns/#the-deployment-pipeline

Version Control

Prod
Environment

All information necessary
to reproduce the state of
production in version
control. All changes
reviewed using pair
programming or formal
code review.

Validated changes from
version control can be
applied on demand using
fully automated
processes (scripts,
Terraform,
CloudFormation, etc.)

App Team

App Team

Cloud Infrastructure
Management Team

Tests
(Automated
& Manual),
Approval

Test
Environment

Figure 1: The Infrastructure deployment pipeline (IDP) provides complete
version-control history and supports change-control enforcement.

https://continuousdelivery.com/implementing/patterns/#the-deployment-pipeline
https://continuousdelivery.com/implementing/patterns/#the-deployment-pipeline

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 10

Where IaC is applied comprehensively, it’s possible
to completely recreate the state of a production
infrastructure purely from information and programs
in version control. We can also see the complete
history of all changes made to the infrastructure by
looking through the version-control log for auditing
and compliance purposes.

Further, IaC allows infrastructure policy and control
implementations to be specified declaratively and
then enforced, both as part of an automated change
process and dynamically within test and production
environments (for example using cloud functions). In
this way, we can validate and test for compliance in an
automated way continuously throughout the lifecycle
of platforms and systems, substantially reducing the
burden of continuous monitoring5.

In the context of cloud infrastructure, IaC allows
us to substantially increase both the integrity and
availability of our systems by ensuring we can
reproduce the state of our production environment
exactly (using the cloud’s API) in a predictable time. In
the case of a disaster recovery scenario, IaC enables us
to restore service quickly and predictably, as opposed
to a process that involves making changes manually
(which is typically both time-consuming and error-
prone). IaC also enables us to create production-like
test environments on demand.

It’s important also to extend the use of IaC to the
machine images (templates from which new virtual
machine instances are created) used in cloud
environments. These images should be reproducible
purely from information stored in version control
using an automated process, rather than the result
of manual configuration. This is implemented in a
similar way to the IDP, creating a machine image

5. The OpenControl community has done some important work in this area:
http://open-control.org/

http://open-control.org/

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 11

deployment pipeline (Packer and Netflix Aminator are
two open source tools that can be used to implement
this pipeline). In this way, they can easily be audited,
upgraded, and updated in the event of new versions
of components or libraries becoming available, or
patching due to vulnerabilities (CVEs).

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 12

Principles and Practices for Creating a
Cloud Platform
Applications don’t exist in a vacuum—they require an
infrastructure platform. In traditional data centers,
significant attention was paid to issues such as
disaster recovery, storage, and networking. In the
context of the cloud, these concerns are taken care
of at the platform and application layers. Cloud
platforms can implement a number of controls that
can be leveraged by applications running on them,
which substantially reduces the burden of delivering
FISMA-compliant information systems.

Building a cloud platform requires an additional
platform layer on top of the infrastructure layer
offered by cloud service providers. In this section, we’ll
discuss the motivations behind creating this platform
and the principles that should govern its design,
particularly in the context of the federal government.

Create a Platform to Manage Service Lifecycles,
Dependencies, and Costs
In a cloud platform, deploying and managing the
lifecycle of applications, network traffic routing, and
logical process and network isolation are all managed
by a cloud-scheduler service combined with a
container platform. However, building and operating
a platform—particularly in a multi-tenant context—
is significantly more complex than deploying (for
example) Kubernetes.

Applications don’t
exist in a vacuum—
they require an
infrastructure
platform.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 13

When designing a cloud platform, there are high-
er-level services we care about, such as logging, mon-
itoring, and alerting. These services must be provided
not just for the platform but also for the applications
that run on it. As far as possible, the applications
should not need to know anything about how these
are implemented. For example, applications should be
able to simply log to the default system log and the
platform should take care of gathering, aggregating,
and storing log files and making them searchable.

Procurement and
Contracting Considerations

Procuring cloud services can
be a frustrating exercise. Due
to the infrastructure-meter-
ing model (which depends
on the level of usage by end
users) precision is impossi-
ble in practice. While many
agencies attempt to use firm-
fixed-price contracts since
these are relatively simple to
formulate, these contracts
are unsuitable for cloud
services since, like telecom
services, demand for usage
is inherently unpredictable.
It’s a mistake to attempt to
enumerate each individual
service provided by a cloud,
fix the price-per-unit, and es-
timate the amount of usage.

Further, the potential con-
sequences of a usage es-
timate that is too low are
catastrophic, such as having
to switch off public services
in order to avoid violating
the Antideficiency Act.

Unfortunately, that leads to
padding estimates signifi-
cantly, resulting in poor re-
source allocation and waste.
This is compounded by the
fact that firm-fixed-price
contracts must have their full
contract value allocated up
front. These contracts also
fail to take advantage of the
fact that the cost of cloud
services inevitably trends
downwards over time, and
thus represents poor value for
agencies and taxpayers.

Cloud services are effectively
commodities (another term for
cloud is “utility computing”),
which allows for a substantial-
ly better approach. By procur-
ing the entire catalog of cloud
services as a single product
using a time-and-materials/la-
bor hours (T&M/LH) contract,
and then use a Lowest Price
Technically Acceptable (LPTA)
source-selection process,
buyers can select the cloud
provider with the cheapest
unit pricing for the services

required. Crucially, T&M/LH
contracts can be funded in-
crementally, which means the
total contract value need not
be allocated up front.

It’s still essential to manage
and allocate costs in order
to avoid violating the
Antideficiency Act. This is
another key goal of creating
a cloud platform. Many
platform technologies enable
quotas to be established for
each information system,
allowing resource usage to
be constrained and charged
back to the team that owns
the system. This can be
done on a fixed-price basis,
provided the price more
than covers the cost of the
resources used. This leaves
the cost of operating the
platform itself, which should
be relatively straightforward
to estimate and manage, as
most cloud service providers
have industry-standard
tooling for managing and
monitoring spend.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 14

It’s also important to consider the services and
resources that applications depend on. If an
application requires a database, non-ephemeral
storage, or an https endpoint with a valid TLS
certificate, the operator of that application should
be able to self-service and configure these services.
Furthermore, the platform should take care of
managing the lifecycle of these services and their
configuration so that we don’t need to implement a
separate process for provisioning them and tracking
their configuration state.

If these concerns are not taken care of, we face the
following negative consequences6:

• Complex applications that have tight coupling to the
underlying platform.

• High operational burden to manage services that ap-
plications depend on, and longer wait times if teams
cannot self-service the provisioning and configura-
tion of the services their applications depend on.

• Cloud sprawl, with large quantities of left-over infra-
structure components whose purpose is unknown
and which are risky to delete but must be paid for.
This can be mitigated through additional configura-
tion-management processes, but this also leads to
higher operational burden.

Centralize the Platform, Decentralize Delivery
A platform balances the demands of FISMA and FITARA
against the need for teams to self-service their own
infrastructure. With a centrally operated platform,
costs can be managed by creating quotas for systems
that run on the platform, and much of the compliance
architecture can be implemented at the platform layer
and leveraged by the systems running on it.

6. For further discussion of how to manage these issues, see https://18f.gsa.
gov/2016/08/10/patterns-for-managing-multi-tenant-cloud-environments/

A platform balances
the demands of
FISMA and FITARA
against the need
for teams to self-
service their own
infrastructure.

https://18f.gsa.gov/2016/08/10/patterns-for-managing-multi-tenant-cloud-environments/
https://18f.gsa.gov/2016/08/10/patterns-for-managing-multi-tenant-cloud-environments/

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 15

Containerization further enables a clean separation
of concerns at the host level. This includes the
platform maintainer’s responsibility (for example,
applying patches to the operating system and
maintaining antivirus and intrusion-detection
software) and the platform customer’s needs (the
ability to self-service application deployments and
install necessary dependencies).

A common platform that all vendors use to develop
and operate their systems also substantially reduces
the effort required to create, operate, maintain, un-
derstand, and change these services. This, in turn,
makes it easier to change vendors if necessary over
the lifecycle of the information system.

The boundary for central control, however, should be
the API through which individual delivery teams self-
service platform operations including environment
creation, application deployment, and services such
as database instances. Teams should be free to choose
which technologies and toolchains they use, within
certain constraints. The system must be able to be built,
tested, and deployed in a fully automated way, drawing
from source code, scripts, and libraries that are stored
in public or centrally maintained version-controlled
repositories. Teams should also have the flexibility to
choose the software stack installed on hosts. In this way,
teams are free to make technology choices appropriate
to the skills of the team and the system being developed.

Allowing teams to make their own technology choic-
es carries risks, which can be exacerbated by multiple
vendors that will typically be involved in designing, de-
veloping, and operating information systems over their
lifecycle. Sharing a common platform mitigates some of
these, but there are two further practices that can help.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 16

1. Version-controlled repositories
Everything required to build, test, and deploy a service
should be stored in public or centrally maintained,
version-controlled repositories. It should be possible
for a new developer to download a copy of the
repository from version control and run a single
command to build and run tests locally in a sandbox,
and run another single command to deploy the service
to the cloud platform. Documentation, automated
tests, source code, database migration scripts, and
everything else required to deploy or upgrade the
service in production should be in this repository. In
this way, we ensure new vendors can rapidly get up to
speed with systems they are working on.

2. Cross-functional teams
Rather than engaging vendors based on role—one
vendor for development, another for test, and a third
for operations—we should be engaging vendors with
all the necessary skills required to build, test, and
operate services in cross-functional teams. In a
service-oriented architecture, a good heuristic for
decomposing a system into services is that it should
be possible to develop and operate any given service
with a team of about ten people7. These people should
include all the necessary skills required to design,
develop, and operate the service; a model Werner
Vogels, CTO of Amazon, calls “you build it, you run it.”8
By reducing hand-offs and coordination costs, we can
substantially reduce the time to design and operate
services. We also ensure teams can deliver significant
value from early in the lifecycle of a service, get
feedback, and continue to make regular changes and
improvements for the duration of the service’s life.

In general, agency information-security teams will
7. The cloud.gov platform described below was created by a team of
approximately ten people, and Amazon and Google both employ teams of
about this size to create and operate the primitives that comprise their cloud
services.
8. http:// queue.acm.org/detail.cfm?id=1142065

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 17

be responsible for ensuring that the platform and the
applications running on it are authorized through the
application of the NIST Risk Management Framework.
They should give service providers and customers
maximum flexibility in how they achieve these
goals, while encouraging them to leverage existing
FedRAMP authorized solutions and open source tools
(per OMB memorandum M-16-219) wherever possible
to enable re-use of existing solutions.

Design for Multi-Tenancy
Multiple different teams and vendors are typically
involved in the creation, operation, and ongoing
development of any given system over its lifecycle.
It is also common for an information system to be
comprised of multiple services. For these reasons,
any cloud infrastructure in a federal government has
to consider multi-tenancy as a primary requirement,
even if it’s only hosting a single information system.

Multi-tenancy has an important implication for access
control: Users working on one service should only
be able to access resources allocated to that service.
This is difficult in practice, however. Access control
by IaaS providers is typically can’t inadequately
to scope access by users to a given service and
its dependencies except through the application
of extremely fine-grained privileges, which are
burdensome to maintain.

As a result, vendors who manage IaaS services for
agencies typically prevent developers and operators
from making changes to the configuration of the
infrastructure directly. They must instead request
changes through the vendor. This prevents the
implementation of the on-demand self-service
capability that forms part of NIST’s definition of a cloud.

9. https://sourcecode.cio.gov/

Any cloud
infrastructure in a
federal government
has to consider
multi-tenancy as a
primary requirement,
even if it’s only
hosting a single
information system.

https://sourcecode.cio.gov/

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 18

Access controls that do not allow changes to be
scoped by service also present a challenge to
implementing infrastructure-as-code, since any
change must be validated to ensure it only impacts
the intended services.

As a result of these limitations, many vendors simply
make changes manually through the console, record-
ing the changes in a ticketing system. This leads to
several problems that are exacerbated by the unique
nature of cloud infrastructure:

• Slower lead times for making changes, since all changes
must go through a request process that involves
manual steps. This negatively impacts both delivery
speed and time-to-restore in the event of an incident.

• Increased error rates caused by manual changes.
• More complex audit processes to discover the

history of a given configuration item and the
reason for its existence (if traceability from a given
configuration change to a ticket is even possible).

• The creation of “works of art,” which refers to
production configurations whose state has been
created through a series of manual changes. This,
in turn, makes it difficult to patch vulnerabilities,
create test environments, triage issues, and
reproduce the state of production in the event of
a disaster recovery scenario.

An effective multi-tenant cloud infrastructure must
satisfy the following requirements:

• The cloud platform must provide an API for autho-
rized users to self-service changes on-demand (thus
satisfying NIST’s requirements for a cloud).

• The cloud platform must prevent changes from
affecting services to which the user requesting the
change should not have access.

Good Practice:
Implement a Service-
Oriented Architecture

In the service-oriented archi-
tecture (SOA) paradigm, an
information system is decom-
posed into multiple services,
each of which handles a
cohesive set of features
end-to-end (from API to data
management). Each service
can be tested and deployed
independently. Each service
also manages its own data;
integrating into a common
database schema is strictly
forbidden since it creates
dependencies and coupling
at the database level which
prevent services from being
deployed and tested inde-
pendently. Services access
each other’s information over
the network via API calls.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 19

• It must be possible to implement infrastruc-
ture-as-code such that all changes to the state of the
production system are only made using an automat-
ed process purely from information stored in version
control.

Fundamentally there are two ways to handle both
multi-tenancy and the separation of roles and re-
sponsibilities of the service provider and its tenants:
through architecture, through process, or both. PaaS
takes an architectural approach, which has a high-
er initial implementation cost and reduces flexibility,
but cleanly separates these concerns. IaaS requires a
combination of both process and architecture. While
the process-based approach allows more flexibility, it
is also more error-prone and time-consuming in op-
eration, and requires ongoing communication, collab-
oration, and improvement work from stakeholders to
ensure processes continue to meet their needs over
time. Since the design trade-offs are well-understood
in the case of PaaS, architectural approaches are pre-
ferred due to their substantially lower ongoing main-
tenance costs.

A correctly implemented SOA
provides multiple benefits:

Higher levels of resilience
and availability
Elimination of complex,
failure-prone orchestrated
deployments
Easier testing through the
provision of a universal stan-
dard way to run every service
in a debuggable sandbox
The ability for different ser-
vices to be implemented in
different languages
Services that are easier to
evolve, understand, and
maintain

Some of these benefits—
particularly the reduced
complexity of understand-
ing, testing, and deploying
services—gain increased
importance in the context of
modular contracting, where
services may be evolved and
maintained by multiple con-
tractors over their lifecycle.
The decomposition of infor-
mation systems to create an
SOA is an essential ingredi-
ent to developing a cloud-na-
tive architecture, particularly
when building large systems
with multiple vendors.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 20

Reference Architecture: PaaS
In this section, we present a reference architecture
for a PaaS that satisfies the principles presented.
The reference architecture uses Cloud Foundry, but
this could be replaced with OpenShift or another
Kubernetes-based platform. This architecture draws
heavily from cloud.gov, a PaaS created to address
these principles while also aiming to reduce the time
and cost required to authorize information systems
built on top of it.

The reference PaaS (see Figure 2) includes three
virtual private clouds (VPCs): a production VPC, a
staging VPC, and a tooling VPC. The tooling VPC
includes the components necessary to deploy and
administer the platform, including BOSH director,
the UAA user authentication and authorization
system, and the concourse CI tool that implements
the infrastructure deployment pipeline used to
make changes to the configuration of the PaaS. The
production VPC contains a public subnet with an ELB
endpoint and a NAT gateway, and four private subnets:
one for Cloud Foundry’s core components, one for the
production apps deployed into the PaaS, one for RDS
instances, and one for services that can be bound to
running apps. The tooling VPC is peered to both the
production and staging VPC.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 21

The reference PaaS supports multi-tenancy through
Cloud Foundry’s role-based access-control (RBAC)
system10, which logically partitions resources for
different customers (see Figure 3). New customers are
given access to their own organization, the highest-
level logical tier. Organizations contain multiple
spaces (for example, prod, staging, and dev). Each
space can contain multiple applications. Services
such as databases and TLS termination are bound to
applications. There are multiple roles associated with
10. https://docs.cloudfoundry.org/concepts/roles.html

Figure 2: Network diagram for reference PaaS supports multi-tenancy through Cloud Foundry’s
role-based access-control (RBAC) system.

https://docs.cloudfoundry.org/concepts/roles.html

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 22

each logical tier which grant various privileges to
create, modify, or delete objects within Cloud Foundry.
As with Heroku, applications can be deployed from
developer workstations or through a CI server with a
single command.

Cloud Foundry uses its own container scheduler,
Diego11, to deploy and manage user applications. Diego,
like Docker, natively supports the OCI container image
format, but applications are typically deployed on top
of buildpacks—pre-prepared, hardened, technology-
specific images supported by the Cloud Foundry team
(such as Java, .NET Core, Python, Go). When using
a supported buildpack, the PaaS takes care of more
controls for your information system.

In the event that the platform needs to be patched—
for example, when a new vulnerability is discovered—
the hosts can be updated without impacting service.
Every application runs on at least two container
instances so that if one container instance becomes
unavailable, traffic can be routed to the second. This
architecture is leveraged for updates and upgrades:
11. https://docs.cloudfoundry.org/concepts/diego/diego-architecture.html

Figure 3: Cloud Foundry’s role-based access-control (RBAC)
system logically partitions resources for different customers to
support multi-tenancy.

https://docs.cloudfoundry.org/concepts/diego/diego-architecture.html

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 23

New container instances are created on patched hosts
and client traffic is routed to these new instances,
following which old instances are shut down.
Customers can also upgrade their applications or
buildpacks on-demand without service interruption
using the same mechanism.

The reference PaaS also provides a number of other
services at the platform layer: continuous monitoring,
anti-malware, network security, scaling, logging, and
alerting. In order to implement these services, a num-
ber of open source and commercial components can
be employed inside the information system bound-
ary, such as ElasticSearch, Logstash and Kibana (the
ELK stack), Nessus, ClamAV, Snort, and Tripwire. The
reference PaaS also utilizes AWS’ native CloudTrail,
CloudWatch, Config, and Trusted Advisor services.

Roles and Responsibilities
The components of the reference PaaS are shown in
Figure 4, along with who is responsible for managing
each component. Logging should be implemented
at the platform layer. The platform should pipe all
standard output from applications running on it to
a central store (using the ELK stack or NewRelic, for
example) with a multi-tenant front-end that lets
application owners view or search logs created by
their applications.

Monitoring and alerting should be implemented at
both the platform and application layers. The platform
should have monitoring and alerting for every VM and
service it operates. Application operators should install
tools for monitoring and alerting such as NewRelic,
SteelCentral, and Honeycomb. The platform operator
should also have alerting for platform-level incidents
along with a portal to inform application operators of
the status of the platform.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 24

The application stack can be either the service
provider or customer responsibility. Cloud Foundry
provides standard buildpacks for popular technologies,
enabling one-click deployment of applications built on
supported stacks. Development teams can also self-
service custom buildpacks, or even deploy custom
Docker images if they require more flexibility. In
return, developers are responsible for implementing,
documenting, and testing additional controls. The
ability to provide this flexibility—while still ensuring
that threat and vulnerability scanning and host-
intrusion detection are performed at the platform
layer—is a key benefit of containerization technology.

Figure 4: PaaS roles and responsibilities.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 25

The “serverless” paradigm, in which server-side code
“is run in stateless compute containers that are event-
triggered, ephemeral... and fully managed by a 3rd party”
is already in use in several agencies (including defense
agencies). In implementation terms, it is similar to the
platform described above, but with the cloud service
provider taking responsibility for the application
stack and with reduced configuration flexibility. In
return, more of the compliance architecture can be
implemented at the platform level, customers pay
substantially less for the service, and they don’t need to
take care of issues such as patching and upgrading the
stack and scaling up and down.

platform running on top of
AWS GovCloud. While cloud.
gov’s System Security Plan
(SSP) is not public, a list of
source code repositories1
and network and data-flow
diagrams2 are available.

Of the 325 security controls
required for moderate-
impact systems, cloud.gov
handles 269. An additional
41 controls are a shared
responsibility in which
cloud.gov provides part of
the requirement, and your
applications provide the
rest. Agencies provide full
implementations for the
remaining 15 controls, such
as ensuring data backups
and using reliable DNS
(Domain Name System)
name servers for websites.

1. cloud.gov/docs/ops/repos
2. diagrams.fr.cloud.gov

cloud.gov

The goal of the cloud.gov
team was to produce a
FISMA-compliant platform
that provides similar
capabilities to Heroku. Work
began on cloud.gov in March
2015. The cloud.gov team
began preparing for the
FedRAMP process in March
2016 and received FedRAMP
Ready status in May 2016.
In February 2017, cloud.gov
received a provisional ATO
as a platform for moderate
impact system from the
FedRAMP Joint Authorization
Board consisting of the CIOs
of DoD, DHS, and GSA. At
the time of writing, multiple
agencies have applications
running in cloud.gov.

Cloud.gov is a PaaS whose
primary components are the
open source Cloud Foundry

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 26

Managing Infrastructure-as-a-Service
A modern PaaS provides many advantages such as
multi-tenancy support, infrastructure lifecycle man-
agement, one-click deployments, traffic routing, au-
tomated patching, networking, logging, alerting, and
versioning. There are scenarios, however, where it
makes sense for application developers to deal directly
with the infrastructure layer.

Three common scenarios include:

• Performing a “lift and shift”—taking an application
hosted in a data center that doesn’t easily fit into the
PaaS deployment model described above.

• Developing a new system where a suitable platform
doesn’t already exist, or the platform doesn’t satisfy
the NIST criteria for a cloud.

• Developing a new system that can’t easily be adapted
to fit the PaaS deployment model, such as a batch-
processing system.

While new systems should be developed on a PaaS
following the guidelines described, IaaS can provide a
stepping-stone from a data center to a modern PaaS
or serverless architecture. In this model, agencies

“lift and shift” existing applications into IaaS to
enjoy substantially reduced infrastructure costs
before refactoring applications into a PaaS in order
to improve reliability and availability and reduce
ongoing maintenance costs.

When deploying to IaaS, it may make sense to
give application developers direct access to cloud

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 27

infrastructure. There are various concerns that must
be addressed in this approach.

• Comprehensive change and configuration
management. The infrastructure-as-code approach
to configuration and change management is essential
in this model as it substantially reduces the ongoing
maintenance cost and risk of managing a multi-tenant
IaaS platform. Because all configuration information
is kept in version control and an infrastructure
deployment pipeline (IDP) is responsible for applying
all changes, we can enforce separation of concerns
between different teams as well as standards for
infrastructure configuration using the change-
management toolchain (see Standardization, below).

• Multi-tenancy. Multiple teams must be able to use
the infrastructure without the possibility of interfer-
ing with each other’s work. One way to achieve this
is to use completely separate logical infrastructure
accounts for each information system. This mecha-
nism can be supplemented by creating policies, rules,
and templates (see Standardization, below) which
can help detect and reject changes that impact other
teams’ infrastructure.

• Garbage collection. We must be able to identify
and remove infrastructure that is no longer needed.
One approach is to regularly schedule the deletion
of all infrastructure that is not tagged with the
information system it belongs to. When combined
with the use of an automated deployment system
and infrastructure-as-code, we should be able to
trace every piece of infrastructure back to version-
controlled configuration.

• Standardization. Standardization of the
infrastructure configuration is important for
several reasons: it reduces ongoing maintenance
costs, expedites the risk-management process,
and aids collaboration between teams. The use
of standardized infrastructure templates (see
Figure 5 for an example) and patterns, combined

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 28

with a standard toolchain to create and deploy
infrastructure, makes it easier for vendors to work
with systems created by other vendors. It also allows
templates to be created for the documentation
required by the NIST risk-management process,
such as the system security plan (SSP) and security
assessment report (SAR). Teams should also
standardize on processes for managing deployment,
rollback, migration, high availability, and scaling—all
of which are provided for free in the PaaS model.

Figure 5: Example of a network diagram for a potential infrastructure template.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 29

While the infrastructure-as-code paradigm provides
fewer constraints (and hence more design flexibility)
and easier access to developers, there are some trade-
offs when compared to the PaaS approach:

• Significantly more controls must be documented and
the implementations tested compared to the PaaS
approach. Templates can reduce some of this bur-
den, but they cannot eliminate it. This means longer
times to achieve Authority to Operate (ATO).

• Maintaining and evolving infrastructure
configuration, keeping systems and software
patched and up-to-date, preventing configuration
drift between environments, and continuous
monitoring represent a significant ongoing burden
that requires substantial engineering effort. This
doesn’t only mean more work for the team building
the system; Provision must also be made to continue
this work when the initial development contract
ends. This work requires a certain level of technical
skill, experience, and discipline from developers
working in IaaS over and above that required from a
PaaS-hosted system.

Thus, an IaaS approach is only recommended in the
scenarios described at the start of this section, and
then only as a transition to a platform-based approach.

A hybrid approach is also possible, in which some
information systems are hosted on a PaaS, with others
hosted on IaaS. In this situation, systems hosted
on IaaS should re-use platform services such as
logging, alerting, and hardened OS images wherever
possible. Systems hosted on IaaS should also provide
a service interface that allows PaaS-hosted systems
to access them in a standardized way. For example,
Cloud Foundry, Kubernetes, and OpenShift all
provide a standard way to expose remote services to
applications running on them.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 30

Roles and Responsibilities
An effective multi-tenant IaaS implementation allows
delivery and operation of information systems faster,
at lower cost, and with higher quality compared to
traditional data centers. These goals sometimes come
into conflict, however. For example, enabling rapid
response times for infrastructure requests (which
helps development teams to go faster) might require
more operators, which can drive up costs for the
service provider.

An important metric for the performance of an
infrastructure platform is operators-per-developer.
The goal is to keep the number of operators constant
as the number of developers the platform serves
increases. In order to achieve this, it’s essential to
make all routine infrastructure operations self-
service (for example, creating new environments
including routes, and deploying). The only manual step
should be the initial grant of platform access to an
administrator on each customer team who can then
manage all further development accounts.

This in turn requires the use of an infrastructure
deployment pipeline (IDP) as described in this
document. Ultimately, it’s the IDP that makes all
changes to the infrastructure, based on changes
submitted to version control. There remains the issue
of how to separate the responsibilities of the team
managing the cloud infrastructure and the teams using
that infrastructure. In the PaaS model, this is enforced
through architecture. In the IaaS model, this must be
done through process. The IDP can help us with this
problem by enforcing rules and policies that let teams
make changes to the infrastructure for applications
they are responsible for, without impacting other teams’
infrastructure or shared infrastructure.

Finally, we must consider the machine
images. In the PaaS model, an architectural

An effective multi-
tenant IaaS
implementation
allows delivery
and operation of
information systems
faster, at lower cost,
and with higher
quality compared
to traditional data
centers.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 31

approach—containerization—is used to separate the
responsibility of the cloud infrastructure management
team (the base virtual image) from the responsibility
of the application teams (the container image). In
both cases, the images must be created using a fully
automated process from information in version
control, using a machine image deployment pipeline.
The alternative to using containerization is to have
machine images created through collaboration
between teams. Since multiple controls from NIST SP
800-53 are implemented through the machine image,
this brings teams that contribute to machine image
configuration in scope for the continuous monitoring
process. The powerful audit and policy-enforcement
capabilities provided by the deployment pipeline can
ameliorate this burden.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 32

Conclusion and Recommendations
Many federal agencies have begun adoption of modern,
agile approaches to software delivery, with the goal
of building higher quality services faster and more
cheaply. While there are significant barriers to the
adoption of this paradigm in the federal government,
we offer specific principles and practices that have
already achieved success.

Our recommendations for federal agencies balance the
need to meet FITARA and FISMA requirements while
providing teams the flexibility they require. In this way,
agencies can meet their risk-management goals while
also enabling the faster delivery, higher reliability and
availability, and improved quality that the agile and
devops movements enable. Agency teams, vendors, and
IT leadership should embrace the power and flexibility
these platforms provide.

Key Recommendations
• Create a centrally managed cloud platform-as-a-

service (PaaS) that enables teams to self-service the
operations they need (such as creating environments,
deploying applications to them, and creating database
instances) on-demand through an API without
requiring a ticketing system.

• Use infrastructure-as-code and containerization
to implement as many as possible of the controls
required by the NIST Risk Management Framework
at the platform layer.

• Use infrastructure-as-a-service (IaaS) combined
with the principles and practices described in this
document as a stepping-stone approach until a PaaS

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 33

can be procured and provisioned, to “lift and shift”
existing systems that cannot easily be ported to a PaaS,
and for other edge cases where a PaaS is unsuitable.

• Use infrastructure-as-code and deployment
pipelines to manage configuration and make
changes to your cloud infrastructure.

• Design your platform for multi-tenancy, including
built-in role-based access control and the ability
to assign and manage quotas to control and charge
back costs.

• Eliminate custom configuration, appliances, and
middleware and use native cloud primitives and
services instead.

• Give teams the flexibility to choose the most
suitable technologies and toolchain to create, build,
and deploy their systems.

• Ensure you can reproduce both production and
testing instances of your platform (including
machine images), and every service running on it,
from information in version control using a fully
automated process. Validate this capability by
practicing disaster recovery and failover.

• Don’t procure cloud services on firm fixed price
contracts. Instead, treat commercial infrastruc-
ture-as-a-service clouds as a commodity and procure
with incrementally-funded contracts.

Cloud Infrastructure in the Federal Government by Nava Public Benefit Corporation and DORA | 34

Acknowledgements
Many thanks to Rohan Bhobe, Nicole Forsgren, Mark
Hopson, Kenneth Howard, Sha Hwang, Diego Lapiduz,
Bret Mogilefsky, Mark Schwartz, Will Slack, and Gabe
Smedresman for their feedback on drafts of this white
paper, and to Cheryl Coupé for editing.

Author
Jez Humble is co-author of The DevOps Handbook,
Lean Enterprise, and the Jolt Award-winning
Continuous Delivery. He has spent his career tinkering
with code, infrastructure, and product development
in companies of varying sizes across three continents,
most recently working for the US Federal Government
at 18F. He is currently researching how to build
high-performing organizations at the startup he co-
founded, DevOps Research and Assessment LLC, and
teaching at UC Berkeley.

devops-research.com

About Nava
Nava is a public benefit corporation working with
government agencies to improve their digital services.
Founded from a team brought in to help the Centers
for Medicare and Medicaid Services (CMS) recover
HealthCare.gov in 2013, Nava now works across both
federal and state government agencies to modernize
critical systems towards highly secure, reliable, and
fault-tolerant cloud infrastructure.
navapbc.com
hello@navapbc.com

http://devops-research.com
http://navapbc.com
mailto:hello@navapbc.com

	Modern Cloud Deployments Require Modern Practices
	Leverage Cloud-Native Architecture to Meet Architectural and Security Goals, Increase Utilization, and Reduce Costs
	Employ DevOps Practices to Increase Availability, Reduce Cycle Times, and Improve Auditability
	Principles and Practices for Creating a Cloud Platform
	Reference Architecture: PaaS
	Managing Infrastructure-as-a-Service
	Conclusion and Recommendations

